Dr. 格伦卢卡雷利

格伦·斯皮内利博士

Professor

Earth & 环境科学


研究兴趣

海洋水文地质

In 海洋地壳, fluid flow between the basaltic basement aquifer and the overlying ocean is an important control on heat transport, solute transport, and alteration 地壳的. As sediments gradually accumulate on 海洋地壳, they change the nature of fluid circulation within the basement aquifer. 我对海洋水文地质学的兴趣 include fluid and heat circulation patterns in 海洋地壳, 磁导率 evolution of 海洋地壳, and fluid and heat flow through seafloor sediments. 我研究过 fluid and heat flow in diverse settings, including the flanks of mid-ocean ridges, 俯冲带(e.g., Costa Rica, Nankai Trough, Cascadia, and southern Chile), 和河口.

 


Follow this link for information on an ongoing project examining hydrothermal circulation in oceanic crust approaching the Cascadia subduction zone: CHINOoK (Cascadia Hydrothermal circulation IN Ocean (K)rust).

Below: Photo of AUV Sentry being deployed to map a seep site offshore Oregon.水下航行器哨兵部署照片

 

As ocean crust subducts, fluid circulation within it is an important control on subduction 区温度. With current and former students, 我研究过 the evolution of hydrothermal circulation in subducting crust. In these studies, we examined some general aspects of fluid and heat circulation in subducting crust — for example, how far into a subduction zone can fluid circulation in the ocean crust aquifer persist, and what are the thermal consequences of that circulation?  我们已经研究了流体和热 circulation in the Nankai Trough (southern Japan), Cascadia, southern Chile, Mexico, 和日本北部的俯冲带.  We found that the thermal effects of fluid circulation in subducting crust may extend the seismogenic portion of the plate boundary fault closer to the shoreline and populated areas than previously estimated.

I am also interested in how water derived from mineral dehydration reactions affects the fluid pressure distribution in subduction zones.  在近海的俯冲带 Costa Rica, I examined how the release of water bound in minerals may affect the distribution of fluid overpressures (and therefore effective stress) on the plate boundary fault.  That study focused on dehydration reactions in sediment at fairly low temperatures (<150 ˚C).  In ongoing projects, I am examining how the release of water from the basement rocks of oceanic crust at higher temperatures may affect the distribution of excess fluid pressures in 俯冲带, and how fluid sources from the subducting slab link with mantle wedge alteration and melting.  This has implications for understanding the overall “plumbing system” of subduction zones.

 

断裂带渗透率

In collaboration with geologists and hydrogeologists in our department, I am working on a geological, geophysical, and hydrological study of field-scale fault-zone cementation 和磁导率. Geologic faults usually make the news only when they have produced 破坏性地震.  However, faults also quietly have an important impact on society that most people never think about – they control the flow of groundwater and petroleum 在含水层和油田.  In fact, a fault acting as a barrier for fluids can make the difference between a productive water or oil well and a terrible one.   This is true for the Rio Grande aquifer system, in which groundwater levels can vary by hundreds 断裂带交叉时的脚. Through this study, we will address the difficult question of the role that natural cements plays in controlling the ease with which 流体穿过断层. 

 Below: Photo of a strongly-cemented portion of the Loma Blanca Fault.洛马布兰卡断层的照片

The cements are composed of minerals precipitated from groundwater over thousands 年或以上.  As the minerals precipitate they fill pores in the rock, clogging them, and making it difficult for fluids to flow. 然而,确定分布 断裂带的胶结是很困难的.  As a result, fault-zone cementation is typically not accounted for in estimates of the impact of faults on fluid flow. 在我们的研究中, we are taking advantage of unique electrical properties of natural cements to map their 3-D distribution in an exceptionally well-exposed fault zone a few miles north 新墨西哥州索科罗市.  Then, we will directly measure the impact of the cements on groundwater flow by drawing water from wells adjacent to the fault.

Below: Coring and well-installation operations at the Loma Blanca Fault.

取心和井安装

 

沉积学/sediment physical properties

Variations in sediment type and porosity can lead to large differences in sediment 磁导率. My previous sediment oriented studies range from determining sedimentation patterns on the northern California margin from reflection seismic data to laboratory consolidation 和磁导率 testing of sediments from San Francisco Bay, the Juan 德富卡山脊侧翼和刚果扇.

Some of my work in this area examines the thermal, diagenetic, and consolidation history of sediment approaching 南开海槽俯冲带 off Japan. 我检查过了 silica cementation of hemipelagic sediment on the Nankai margin. 我乘IODP号船航行 expedition to examine cementation/deformation of sediment approaching and entering 南开海槽俯冲带.  I am also characterizing the thermal state of 南开海槽俯冲带.

出版物

* indicates student first author, Spinelli primary advisor

B *协会,., *T. Kyritz, G.A. Spinelli, R.N. Harris, K. 迪克森,.M. Tréhu, S. Carbotte, S. Han, B. Boston, M. Lee, and the CHINOoK project science party, 2023. Thermally significant fluid seepage through thick sediment on the Juan de Fuca plate entering the Cascadia subduction zone, 地球化学,地球物理学,地球系统, 24, e2023GC010868; http://doi.org/10.1029/2023GC010868.

卢卡雷利,G.A., A. Clark, M. Clark, S. Edel, S. Farrar, J. Fastle, C. 格雷戈等人., 2022. Magnetic field intensity evidence for a buried basalt body in Socorro Canyon. In Socorro Region III, New Mexico Geological Society 72nd Annual Fall Field Conference Guidebook, ed. D.J. Koning, K.J. Hobbs, F.M. Phillips, W.J. Nelson, S.M. Cather, A.C. Jakle, and B. Van Der Werff, 112-113. http://doi.org/10.56577/FFC-72.

*Barnes, H., *J.R. Hinojosa, G.A. Spinelli, P.S. Mozley, D. Koning, T.G. 斯普劳尔和J.L. 威尔逊,2021.  探测断层带 characteristics and paleo-valley incision using electrical resistivity: Loma Blanca Fault, New Mexico, Geophysics, http://doi.org/10.1190/geo2020-0375.1.

Harris, R.N., G.A. Spinelli, M. Hutnak 2020.  Heat flow evidence for hydrothermal circulation in oceanic crust 华盛顿格雷斯港近海, 地球化学,地球物理学,地球系统, http://doi.org/10.1029/2019GC008879.

*Sproule, T.G., G.A. Spinelli, J.L. Wilson, M.D. Fort, P.S. 莫兹利和J. Ciarico 2020. 断裂带的影响 cementation on groundwater flow at the field scale, 地下水, http://doi.org/10.1111/gwat.13062.

*Lucero, A.C., G.A. Spinelli, J. He, 2019.  The Thermal Effects of Plate-Bending-Related Thickening of the Oceanic Crustal Aquifer in the Nankai Trough and Japan Trench Subduction Zones, 地球物理研究杂志, doi:10.1029/2018JB016556. Abstract.

Huepers, A., L.N. Warr, G. Grathoff, K. Wemmer, G. Spinelli, and M. 安德伍德,2019. Spatio-temporal characterization of smectite-to-illite diagenesis in the Nankai Trough accretionary prism revealed by samples from 3 km below seafloor, 地球化学,地球物理学,地球系统. doi:10.1029/2018GC008015. Abstract.

卢卡雷利,G., I. Wada, K. Wang, J. He, R. 哈里斯和M. 安德伍德,2018年. 成岩、变质 and hydrogeologic consequences of hydrothermal circulation in subducting crust, Geosphere. doi: 10.1130 / GES01653.1. Abstract.

Harris, R.N., G.A. Spinelli, and A.T. 费舍尔,2017. Hydrothermal circulation and the thermal structure of shallow 俯冲带, Geosphere, doi:10.1130 / GES01498.1. Abstract.

*Perry, M., G.A. Spinelli, I. Wada, and J. He, 2016. Modeled temperatures and fluid source distribution for the Mexican subduction zone: effects of hydrothermal circulation and implications 对于板块边界地震过程, 地球化学,地球物理,地球系统, doi:10.1002/2015GC006148. Abstract.

卢卡雷利,G.A., I. Wada, J. He, and M. 佩里,2016. The thermal effect of fluid circulation in the subducting crust on slab melting in the Chile subduction zone, 地球与行星科学通讯中文信息学报,34,101-111,doi: 10.1016/j.epsl.2015.11.031. Abstract.

*Rotman, H.M.M., and G.A. Spinelli, 2014. Remarkably consistent thermal state of the south central Chile subduction 南纬36°至45°的区域, 地球物理研究杂志, doi:10.1002/2013JB010811. Abstract.

卢卡雷利,G.A., 2014. Long-distance fluid and heat transport in the oceanic crust entering the Nankai 俯冲带,NanTroSEIZE样带, 地球与行星科学通讯中文信息学报,389,86-94,doi:10.1016/j.epsl.2013.12.013. Abstract.

*Rotman, H.M.M., and G.A. Spinelli, 2013. Global analysis of the effect of fluid flow on subduction 区温度s, 地球化学,地球物理学,地球系统, doi:10.1002/ggge.20205. Abstract.

Harris, R., M. Yamano, M. Kinoshita, G. Spinelli, H. Hamamoto和J. Ashi, 2013. A synthesis of heat flow determinations and thermal modeling along the Nankai Trough, Japan, 地球物理研究杂志, doi:10.1002/jgrb.50230. Abstract.

卢卡雷利,G.A., and A. 赫顿,2013. Data report: amorphous silica content of sediment from Sites C0011 and C0012 in the Shikoku Basin on the NanTroSEIZE transect, Proceedings of the Integrated Ocean Drilling Program, 322, doi:10.2204/iodp.proc.322.204.2013. Article.

*Cozzens, B.D., and G.A. Spinelli, 2012. A wider seismogenic zone at Cascadia due to fluid circulation in subducting 海洋地壳, Geology中文信息学报,40 (10),899-902,doi:10.1130/G33019.1. Article.

卢卡雷利,G.A., and R.N. 哈里斯,2011. Thermal effects of hydrothermal circulation and seamount subduction: Temperatures in the Nankai Trough Seismogenic Zone Experiment transect, Japan, 地球化学,地球物理,地球系统, 12, Q0AD21, doi:10.1029/2011GC003727. Abstract.

卢卡雷利,G.A., and R.N. 哈里斯,2011. Effects of the legacy of axial cooling on partitioning of hydrothermal heat extraction from oceanic lithosphere, 地球物理研究杂志, 116, B09102, doi:10.1029/2011JB008248. Abstract.

Harris, R.N., F. Schmidt-Schierhorn, G.A. Spinelli, 2011. Heat flow along the NanTroSEIZE transect: Results from IODP Expeditions 315 and 316 offshore the Kii Peninsula, Japan, 地球化学,地球物理学,地球系统, 12, Q0AD16, doi:10.1029/2011GC003593. Abstract.

*White, R., G.A. Spinelli, P.S. 莫兹利和N.W. 邓巴,2010. Importance of volcanic glass alteration to sediment 稳定:日本近海; 沉积学生态学报,58 (5),1138-1154,doi:10.1111/j.1365-3091.2010.01198.x. Abstract.

Harris, R.N., G.A. Spinelli, C.R. Ranero, I. 格里夫迈耶和H. Villinger 2010. 哥斯达黎加的热状态 Rica margin wedge 2: Thermal models of the shallow Middle America subduction zone 哥斯达黎加近海, 地球化学,地球物理,地球系统,11 (12), Q12S28, doi:10.1029/2010GC003272. Abstract.

卢卡雷利,G.A., Wang, K., 2009. Links between fluid circulation, temperature, and metamorphism in 俯冲板, 地球物理研究快报, 36, L13302, doi:10.1029/2009GL038706. Abstract.

*Kummer, T.D., 卢卡雷利,G.A., 2009. Thermal effects of fluid circulation in the basement aquifer of subducting 海洋地壳,地球物理研究杂志, 114, B03104, doi:10.1029/2008JB006197. Abstract.

卢卡雷利,G.A., Wang, K., 2008. Effects of fluid circulation in subducting crust on Nankai margin 发震带温度; Geology, 36 (11), 887-890. Abstract.

Hutnak, M.费雪,A.T., Harris, R., Stein, C., Wang, K., 卢卡雷利,G.辛德勒,M.维林杰,H., and E. 2008银,. 非常大的热量 fluid fluxes driven through mid-plate outcrops on 海洋地壳, 自然地球科学, doi:10.1038 / ngeo264. Abstract.

*Kummer, T.D., 卢卡雷利,G.A., 2008. Hydrothermal circulation in subducting crust reduces subduction 区温度s.Geology, 36 (1), 91-94. Abstract.

卢卡雷利,G.A.萨弗,D.M., 2007. Trench-parallel fluid flow in subduction zones resulting from 温度的差异.地球化学,地球物理学,地球系统, 8, Q09009, doi:10.1029/2007GC001673. Abstract.

卢卡雷利,G.A., Mozley, P.S., Tobin, H.J.M .安德伍德.B.霍夫曼,n.n.W., Bellew, G.M., 2007. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone. 美国地质学会公报, 119 (3), 377-390. Abstract.

Hutnak, M.费雪,A.T., Stein, C., Harris, R., Wang, K., Silver, E., 卢卡雷利,G.芬德,M.埃尔斯沃思,C.维林杰,H.皮萨尼,P.C.德顺,H.麦克奈特, B., 2007. The thermal state of 18-24 Ma upper lithosphere subducting below the Nicoya 半岛,哥斯达黎加北部边缘. In T. 狄克逊和C. Moore (eds.), The Seismogenic Zone of Subduction Thrust Faults哥伦比亚大学出版社.

Pratson, L.F.C.A.韦伯格,P.L.斯特克勒,M.S.史文森,J.B.Cacchione, D.A.卡森,J.A.默里,A.B.沃林斯基,M.A.Gerber, T.P.穆伦巴赫,B.L., 卢卡雷利,G.A.富尔索普,C.S.奥格雷迪,D.B., Parker, G.新泽西州德里斯科尔.W., Burger, R.L., Paola, C., Orange, D.L., Field, M.E.弗里德里希,C.T., Fedele, J.J., 2007. 海景进化 on clastic continental shelves and slopes. In C.A. Nittrouer J.A. Austin, M.E. Field, J.H. Kravitz, J.P.M. 斯维茨基和P.L. Wiberg (eds.), 大陆边缘沉积,布莱克威尔出版社,p. 339-380.

卢卡雷利,G.A.萨弗,D.M.M .安德伍德.B. 2006. Hydrogeologic responses to three-dimensional temperature variability, Costa Rica subduction margin. 地球物理研究杂志, 111, B04403, doi:10.1029/2004JB003436. Abstract.

卢卡雷利,G.A., 安德伍德,M.B. 2005. Modeling thermal history of subducting crust in Nankai Trough: constraints from in situ sediment temperature and diagenetic reaction progress. 地球物理研究快报, 32, L09301, doi:10.1029/2005GL022793. Abstract.

安德伍德,M.B., Hoke, K.D.费雪,A.T., Davis, E.E.詹巴尔沃,E.Zuehlsdorff, L., 卢卡雷利,G.A. 2005. Provenance, stratigraphic architecture, and hydrogeologic influence of turbidites on the mid-ocean ridge flank of northwestern Cascadia Basin, Pacific Ocean. 沉积研究杂志, 75(1), 149-164. Abstract.

卢卡雷利,G.A.费雪,A.T., 2004. Hydrothermal circulation within topographically rough basaltic basement on the Juan de Fuca Ridge flank. 地球化学,地球物理,地球系统, 5、2001年第4期,doi:10.1029/2003GC000616. Abstract.

卢卡雷利,G.A., Giambalvo., E.R.费雪,A.T., 2004. Sediment 磁导率, distribution, and influence 论大洋基底的通量. In Davis, E.E. 艾尔德菲尔德,H. (Eds.), Hydrogeology of the Oceanic Lithosphere. 剑桥大学出版社.

卢卡雷利,G.A.萨弗,D.M., 2004. Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. 地球物理研究快报, [j] .科学通报,2013,(6):391 - 391.1029/2003GL018863. Abstract.

卢卡雷利,G.A.M .安德伍德.B., 2004. Character of sediment entering the Costa Rica subduction zone: Implications for partitioning of water along the plate interface. 岛弧, 13(3), 432-451. Abstract.

卢卡雷利,G.A., Zuehlsdorff, L.费雪,A.T., spess, V., Wheat, C.G., Mottl, M.J.Giambalvo, E.R., 2004. Hydrothermal seepage patterns above a buried basement ridge, eastern flank 胡安·德·富卡山脊. 地球物理研究杂志, 109 (B1), B01102, doi:10.1029/2003JB002476. Abstract.

卢卡雷利,G.A., Field, M.E., 2003. Controls of tectonics and sediment source locations on along strike variations in transgressive deposits on the northern California margin. 海洋地质学, 197 (1-4), 35-47. Abstract.

卢卡雷利,G.A.费雪,A.T., Wheat, C.G., Tryon, M.D., Brown, K.D., Flegal, A.R., 2002. Groundwater seepage into northern San Francisco Bay estimated from seepage meters and porewater geochemistry: Implications for dissolved metals budgets,水资源研究, 38 (7), doi: 10.1029/2001WR000827. Abstract.

卢卡雷利,G.A., Field, M.E., 2001. Evolution of continental slope gullies on the northern California margin, 沉积研究杂志, 71 (2), 237-245. Abstract.

Alley, R.B., Shuman, C.A., Meese, D.A., Gow, A.J., Taylor, K.C., Cuffey, K.M.菲茨帕特里克, J.J.格鲁茨,P.M.齐林斯基,G.A., Ram, M., 卢卡雷利,G.A., Elder, B., 1997. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, 和应用程序, 地球物理研究杂志, 102 (C12), p. 26367-26381.